Lecture 13: The Cauchy-Riemann Equations

Dan Sloughter
Furman University
Mathematics 39

March 29, 2004

13.1 Necessity of the Cauchy-Riemann Equations

Suppose f is differentiable at a point $z_{0} \in \mathbb{C}$. If we write $z=x+i y$, $z_{0}=x_{0}+i y_{0}, \Delta z=\Delta x+i \Delta y$, and

$$
f(z)=f(x+i y)=u(x, y)+i v(x, y)
$$

then

$$
\begin{aligned}
f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)= & \left(u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)+i v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)\right) \\
& -\left(u\left(x_{0}, y_{0}\right)+i v\left(x_{0}, y_{0}\right)\right) \\
= & \left.\left(u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y\right)\right)\right) \\
& +i\left(v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}= & \frac{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta z} \\
& +i \frac{v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta z} .
\end{aligned}
$$

If we let $\Delta z \rightarrow 0$ along the real axis, then $\Delta z=\Delta x$, and we have

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}+i \lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{\Delta x} \\
& =u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right) .
\end{aligned}
$$

If we let $\Delta z \rightarrow 0$ along the imaginary axis, then $\Delta z=i \Delta y$, and we have

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
& =\lim _{\Delta y \rightarrow 0} \frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{i \Delta y}+i \lim _{\Delta y \rightarrow 0} \frac{v\left(x_{0}, y^{2}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y} \\
& =-i u_{y}\left(x_{0}, y_{0}\right)+v_{y}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

It follows that

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \text { and } u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) .
$$

We call these equations the Cauchy-Riemann equations.
Theorem 13.1. Suppose f is differentiable at $z_{0}=x_{0}+i y_{0}$ and

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

Then

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \text { and } u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)
$$

and

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right) .
$$

Example 13.1. If $f(z)=|z|^{2}$, then, writing $f(x+i y)=u(x, y)+i v(x, y)$,

$$
u(x, y)=x^{2}+y^{2} \text { and } v(x, y)=0
$$

Hence

$$
u_{x}(x, y)=2 x, u_{y}(x, y)=2 y, \text { and } v_{x}(x, y)=0=v_{y}(x, y)
$$

Hence f satisfies the Cauchy-Riemann equations only at the origin, showing that, as we have seen before, f is not differentiable at any $z \neq 0$.

13.2 Sufficiency of the Cauchy-Riemann equations

By themselves, the Cauchy-Riemann equations are not sufficient to guarantee the differentiability of a given function. However, the additional assumption of continuity of the partial derivatives does suffice to guarantee differentiability.

Theorem 13.2. Suppose f is defined on an ϵ neighborhood U of a point $z_{0}=x_{0}+y_{0}$,

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

and u_{x}, u_{y}, v_{x}, and v_{y} exist on U and are continuous at $\left(x_{0}, y_{0}\right)$. If

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \text { and } u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right),
$$

then f is differentiable at z_{0}.
Proof. Let $\Delta z=\Delta x+i \Delta y$,

$$
\Delta u=u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)
$$

and

$$
\Delta v=v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)
$$

The key fact we need comes from a theorem of multi-variable calculus: under the conditions of the theorem, u and v are both differentiable functions. This means that there exist ϵ_{1} and ϵ_{2}, depending on Δx and Δy, such that

$$
\Delta u=u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1}|\Delta z|
$$

and

$$
\Delta v=v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{2}|\Delta z|
$$

and both $\epsilon_{1} \rightarrow 0$ and $\epsilon_{2} \rightarrow 0$ as $\Delta z \rightarrow 0$. It follows that

$$
\begin{aligned}
f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)= & \Delta u+i \Delta v \\
= & u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1}|\Delta z| \\
& \quad+i\left(v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{2}|\Delta z|\right) \\
= & u_{x}\left(x_{0}, y_{0}\right) \Delta x-v_{x}\left(x_{0}, y\right) \Delta y+i v_{x}\left(x_{0}, y_{0}\right) \Delta x \\
& \quad+i u_{x}\left(x_{0}, y_{0}\right) \Delta y+\left(\epsilon_{1}+i \epsilon_{2}\right)|\Delta z| \\
= & u_{x}\left(x_{0}, y_{0}\right) \Delta z+i v_{x}\left(x_{0}, y_{0}\right) \Delta z+\left(\epsilon_{1}+i \epsilon_{2}\right)|\Delta z| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0}\left(u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)+\left(\epsilon_{1}+i \epsilon_{2}\right) \frac{|\Delta z|}{z}\right) \\
& =u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(u_{0}, y_{0}\right)
\end{aligned}
$$

since

$$
\lim _{\Delta z \rightarrow 0}\left(\epsilon_{1}+\epsilon_{2}\right)=0
$$

and

$$
\left|\frac{|z|}{z}\right|=\frac{|z|}{|z|}=1
$$

for all z.
Example 13.2. It follows now from the previous example that $f(z)=|z|^{2}$ is differentiable at $z=0$ but not for any $z \neq 0$.

Example 13.3. If $f(z)=e^{z}$, then

$$
f(x+i y)=e^{x} e^{i y}=e^{x} \cos (x)+i e^{x} \sin (y)
$$

Hence

$$
u(x, y)=e^{x} \cos (y) \text { and } v(x, y)=e^{x} \sin (y)
$$

Thus

$$
u_{x}(x, y)=e^{x} \cos (y)=v_{y} \text { and } u_{y}(x, y)=-e^{x} \sin (y)=-v_{x}(x, y)
$$

Hence f is differentiable at every $z \in \mathbb{C}$. Moreover,

$$
f^{\prime}(z)=u_{x}(x, y)+i v_{x}(x, y)=e^{x} \cos (y)+i e^{x} \sin (y)=e^{z}=f(z)
$$

