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1 Introduction

This is a course on surfaces. Your mental image of a surface should be something like
this:

or this

However we are also going to try and consider surfaces intrinsically, or abstractly, and
not necessarily embedded in three-dimensional Euclidean space like the two above.
In fact lots of them simply can’t be embedded, the most notable being the projective
plane. This is just the set of lines through a point in R3 and is as firmly connected
with familiar Euclidean geometry as anything. It is a surface but it doesn’t sit in
Euclidean space.

If you insist on looking at it, then it maps to Euclidean space like this

– called Boy’s surface. This is not one-to-one but it does intersect itself reasonably
cleanly.
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A better way to think of this space is to note that each line through 0 intersects the
unit sphere in two opposite points. So we cut the sphere in half and then just have
to identify opposite points on the equator:

... and this gives you the projective plane.

Many other surfaces appear naturally by taking something familiar and perform-
ing identifications. A doubly periodic function like f(x, y) = sin 2πx cos 2πy can
be thought of as a function on a surface. Since its value at (x, y) is the same as at
(x+m, y+n) it is determined by its value on the unit square but since f(x, 0) = f(x, 1)
and f(0, y) = f(1, y) it is really a continuous function on the space got by identifying
opposite sides:

and this is a torus:
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We shall first consider surfaces as topological spaces. The remarkable thing here is
that they are completely classified up to homeomorphism. Each surface belongs to
two classes – the orientable ones and the non-orientable ones – and within each class
there is a non-zero integer which determines the surface. The orientable ones are the
ones you see sitting in Euclidean space and the integer is the number of holes. The
non-orientable ones are the “one-sided surfaces” – those that contain a Möbius strip
– and projective space is just such a surface. If we take the hemisphere above and
flatten it to a disc, then projective space is obtained by identifying opposite points
on the boundary:

Now cut out a strip:

and the identification on the strip gives the Möbius band:
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As for the integer invariant, it is given by the Euler characteristic – if we subdivide
a surface A into V vertices, E edges and F faces then the Euler characteristic χ(A)
is defined by

χ(A) = V − E + F.

For a surface in Euclidean space with g holes, χ(A) = 2 − 2g. The invariant χ has
the wonderful property, like counting the points in a set, that

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B)

and this means that we can calculate it by cutting up the surface into pieces, and
without having to imagine the holes.

One place where the study of surfaces appears is in complex analysis. We know that
log z is not a single valued function – as we continue around the origin it comes back
to its original value with 2πi added on. We can think of log z as a single valued
function on a surface which covers the non-zero complex numbers:
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The Euclidean picture above is in this case a reasonable one, using the third coordinate
to give the imaginary part of log z: the surface consists of the points (reiθ, θ) ∈
C × R = R3 and log z = log r + iθ is single-valued. But if you do the same to√

z(z − 1) you get

a surface with self-intersections, a picture which is not very helpful. The way out is
to leave R3 behind and construct an abstract surface on which

√
z(z − 1) is single-

valued. This is an example of a Riemann surface. Riemann surfaces are always
orientable, and for

√
z(z − 1) we get a sphere. For

√
z(z − 1)(z − a) it is a torus,

which amongst other things is the reason that you can’t evaluate∫
dx

x(x− 1)(x− a)

using elementary functions. In general, given a multi-valued meromorphic function,
the Euler characteristic of the Riemann surface on which it is defined can be found
by a formula called the Riemann-Hurwitz formula.

We can look at a smooth surface in Euclidean space in many ways – as a topological
space as above, or also as a Riemannian manifold. By this we mean that, using the
Euclidean metric on R3, we can measure the lengths of curves on the surface.
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If our surface is not sitting in Euclidean space we can consider the same idea, which
is called a Riemannian metric. For example, if we think of the torus by identifying
the sides of a square, then the ordinary length of a curve in the plane can be used to
measure the length of a curve on the torus:

A Riemannian metric enables you to do much more than measure lengths of curves: in
particular you can define areas, curvature and geodesics. The most important notion
of curvature for us is the Gaussian curvature which measures the deviation of formulas
for triangles from the Euclidean ones. It allows us to relate the differential geometry
of the surface to its topology: we can find the Euler characteristic by integrating the
Gauss curvature over the surface. This is called the Gauss-Bonnet theorem. There
are other analytical ways of getting the Euler characteristic – one is to count the
critical points of a differentiable function.

Surfaces with constant Gaussian curvature have a special role to play. If this curvature
is zero then locally we are looking at the Euclidean plane, if positive it is the round
sphere, but the negative case is the important area of hyperbolic geometry. This has
a long history, but we shall consider the concrete model of the upper half-plane as a
surface with a Riemannian metric, and show how its geodesics and isometries provide
the axiomatic properties of non-Euclidean geometry and also link up with complex
analysis. The hyperbolic plane is a surface as concrete as one can imagine, but is an
abstract one in the sense that it is not in R3.

2 The topology of surfaces

2.1 The definition of a surface

We are first going to consider surfaces as topological spaces, so let’s recall some basic
properties:
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Definition 1 A topological space is a set X together with a collection T of subsets
of X (called the ‘open subsets’ of X) such that

• ∅ ∈ T and X ∈ T ;

• if U, V ∈ T then U ∩ V ∈ T ;

• if Ui ∈ T ∀i ∈ I then
⋃

i∈I Ui ∈ T .

• X is called Hausdorff if whenever x, y ∈ X and x 6= y there are open subsets
U, V of X such that x ∈ U and y ∈ V and U ∩ V = ∅.

• A map f : X → Y between topological spaces X and Y is called continuous if
f−1(V ) is an open subset of X whenever V is an open subset of Y .

• f : X → Y is called a homeomorphism if it is a bijection and both f : X → Y
and its inverse f−1 : Y → X are continuous. Then we say that X is homeomor-
phic to Y .

• X is called compact if every open cover of X has a finite subcover.

Subsets of Rn are Hausdorff topological spaces where the open sets are just the
intersections with open sets in Rn. A surface has the property that near any point
it looks like Euclidean space – just like the surface of the spherical Earth. More
precisely:

Definition 2 A topological surface (sometimes just called a surface) is a Hausdorff
topological space X such that each point x of X is contained in an open subset U
which is homeomorphic to an open subset V of R2.

X is called a closed surface if it is compact.

A surface is also sometimes called a 2-manifold or a manifold of dimension 2. For any
natural number n a topological n-manifold is a Hausdorff topological space X which
is locally homeomorphic to Rn.

Remark: (i) The Heine-Borel theorem tells us that a subset of Rn is compact if
and only if it is closed (contains all its limit points) and bounded. Thus the use of the
terminology ‘closed surface’ for a compact surface is a little perverse: there are plenty
of surfaces which are closed subsets of R3, for example, but which are not ‘closed
surfaces’.
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(ii) Remember that the image of a compact space under a continuous map is always
compact, and that a bijective continuous map from a compact space to a Hausdorff
space is a homeomorphism.

Example: The sphere. The most popular way to see that this is a surface according
to the definition is stereographic projection:

Here one open set U is the complement of the South Pole and projection identifies it
with R2, the tangent plane at the North Pole. With another open set the complement
of the North Pole we see that all points are in a neighbourhood homeomorphic to R2.

We constructed other surfaces by identification at the boundary of a planar figure.
Any subset of the plane has a topology but we need to define one on the space
obtained by identifying points. The key to this is to regard identification as an
equivalence relation. For example, in constructing the torus from the square we
define (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y) and every other equivalence is an equality.
The torus is the set of equivalence classes and we give this a topology as follows:

Definition 3 Let ∼ be an equivalence relation on a topological space X. If x ∈ X
let [x]∼ = {y ∈ X : y ∼ x} be the equivalence class of x and let

X/∼= {[x]∼ : x ∈ X}

be the set of equivalence classes. Let π : X → X/∼ be the ‘quotient’ map which sends
an element of X to its equivalence class. Then the quotient topology on X/∼ is given
by

{V ⊆ X/∼: π−1(V ) is an open subset of X}.
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In other words a subset V of X/∼ is an open subset of X/∼ (for the quotient topology)
if and only if its inverse image

π−1(V ) = {x ∈ X : [x]∼ ∈ V }

is an open subset of X.

So why does the equivalence relation on the square give a surface? If a point lies
inside the square we can take an open disc around it still in the interior of the square.
There is no identification here so this neighbourhood is homeomorphic to an open disc
in R2. If the chosen point lies on the boundary, then it is contained in two half-discs
DL, DR on the left and right:

We need to prove that the quotient topology on these two half-discs is homeomorphic
to a full disc. First take the closed half-discs and set B = DL ∪ DR. The map
x 7→ x + 1 on DL and x 7→ x on DR is a continuous map from B (with its topology
from R2) to a single disc D. Moreover equivalent points go to the same point so it is
a composition

B → X/∼→ D.

The definition of the quotient topology tells us that B/∼→ D is continuous. It is also
bijective and B/∼, the continuous image of the compact space B, is compact so this
is a homeomorphism. Restrict now to the interior and this gives a homeomorphism
from a neighbourhood of a point on the boundary of the square to an open disc.

If the point is a corner, we do a similar argument with quadrants.

Thus the torus defined by identification is a surface. Moreover it is closed, since it is
the quotient of the unit square which is compact.

Here are more examples by identification of a square:
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• The sphere

• Projective space

• The Klein bottle
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• The Möbius band

The Möbius band is not closed, as the dotted lines suggest. Here is its rigorous
definition:

Definition 4 A Möbius band (or Möbius strip) is a surface which is homeomorphic
to

(0, 1)× [0, 1]/ ∼

with the quotient topology, where ∼ is the equivalence relation given by

(x, y) ∼ (s, t) iff (x = s and y = t) or (x = 1− s and {y, t} = {0, 1}).

2.2 Planar models and connected sums

The examples above are obtained by identifying edges of a square but we can use
any polygon in the plane with an even number of sides to construct a closed surface
so long as we prescribe the way to identify the sides in pairs. Drawing arrows then
becomes tiresome so we describe the identification more systematically: going round
clockwise we give each side a letter a say, and when we encounter the side to be
identified we call it a if the arrow is in the same clockwise direction and a−1 if it is
the opposite. For example, instead of
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we call the top side a and the bottom b and get

aa−1bb−1.

This is the sphere. Projective space is then abab, the Klein bottle abab−1 and the
torus aba−1b−1. Obviously the cyclic order is not important. There are lots of planar
models which define the same surface. The sphere for example can be defined not
just from the square but also by aa−1, a 2-sided polygon:

and similarly the projective plane is aa.

Can we get new surfaces by taking more sides? Certainly, but first let’s consider
another construction of surfaces. If X and Y are two closed surfaces, remove a small
closed disc from each. Then take a homeomorphism from the boundary of one disc
to the boundary of the other. The topological space formed by identifying the two
circles is also a surface called the connected sum X#Y . We can also think of it as
joining the two by a cylinder:
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The picture shows that we can get a surface with two holes from the connected sum
of two tori. Let’s look at this now from the planar point of view.

First remove a disc which passes through a vertex but otherwise misses the sides:

Now open it out:

and paste two copies together:
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This gives an octagon, and the identification is given by the string of letters:

aba−1b−1cdc−1d−1.

It’s not hard to see that this is the general pattern: a connected sum can be repre-
sented by placing the second string of letters after the first. So in particular

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g

describes a surface in R3 with g holes.

Note that when we defined a torus from a square, all four vertices are equivalent and
this persists when we take the connected sum as above. The picture of the surface
one should have then is 2g closed curves emanating from a single point, and the
complement of those curves is homeomorphic to an open disc – the interior of the
polygon.

If S is a sphere, then removing a disc just leaves another disc so connected sum with
S takes out a disc and replaces it. Thus

X#S = X.

Connected sum with the projective plane P is sometimes called attaching a cross-cap.
In fact, removing a disc from P gives the Möbius band
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so we are just pasting the boundary circle of the Möbius band to the boundary of the
disc. It is easy to see then that the connected sum P#P is the Klein bottle.

You can’t necessarily cancel the connected sum though: it is not true that X#A =
Y #A implies X = Y . Here is an important example:

Proposition 2.1 The connected sum of a torus T and the projective plane P is
homeomorphic to the connected sum of three projective planes.

Proof: From the remark above it is sufficent to prove that P#T = P#K where K
is the Klein bottle. Now since P can be described by a 2-gon with relation aa and
the Klein bottle is bcbc−1, P#K is defined by a hexagon and the relation aabcbc−1.

Now P#T is aabcb−1c−1:
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Cut along the dotted line...

... detach the triangle and turn it over...

... reattach...
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... cut down the middle...

... turn the left hand quadrilateral over and paste together again...

...and this is aabcbc−1.
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2

2.3 The classification of surfaces

The planar models allow us to classify surfaces. We shall prove the following

Theorem 2.2 A closed, connected surface is either homeomorphic to the sphere, or
to a connected sum of tori, or to a connected sum of projective planes.

We sketch the proof below (this is not examinable) and refer to [3] or [1] for more
details. We have to start somewhere, and the topological definition of a surface is
quite general, so we need to invoke a theorem beyond the scope of this course: any
closed surface X has a triangulation: it is homeomorphic to a space formed from the
disjoint union of finitely many triangles in R2 with edges glued together in pairs. For
a Riemann surface (see next section), we can directly find a triangulation so long as
we have a meromorphic function, and that is also a significant theorem, so we can’t
escape this starting point.

We shall proceed by using a planar model but there is also an alternative proof in
[2] (or download from here: new.math.uiuc.edu/zipproof/zipproof.pdf) if you
don’t object to surfaces covered with zip fasteners.

Now take one triangle on the surface, and choose a homeomorphism to a planar
triangle. Take an adjacent one and the common edge and choose a homeomorphism
to another plane triangle and so on... Since the surface is connected the triangles form
a polygon and thus X can be obtained from this polygon with edges glued together in
pairs. It remains to systematically reduce this, without changing the homeomorphism
type, to a standard form.

Step 1: Adjacent edges occurring in the form aa−1 or a−1a can be eliminated.

Step 2: We can assume that all vertices must be identified with each other. To see
this, suppose Step 1 has been done, and we have two adjacent vertices in different

19



equivalence classes: red and yellow. Because of Step 1 the other side going through
the yellow vertex is paired with a side elsewhere on the polygon. Cut off the triangle
and glue it onto that side:

The result is the same number of sides but one less yellow and one more red vertex.
Eventually, applying Step 1 again, we get to a single equivalence class.

Step 3: We can assume that any pair of the form a and a are adjacent, by cutting
and pasting:

We now have a single equivalence class of vertices and all the pairs a, a are adjacent.
What about a pair a, a−1? If they are adjacent, Step 1 gets rid of them, if not we
have this:

If all the sides on the top part have their partners in the top part, then their vertices
will never be equivalent to a vertex in the bottom part. But Step 2 gave us one
equivalence class, so there is a b in the top half paired with something in the bottom.
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It can’t be b because Step 3 put them adjacent, so it must be b−1.

Step 4: We can reduce this to something of the form cdc−1d−1 like this. First cut
off the top and paste it to the bottom.

Now cut away from the left and paste it to the right.

Finally our surface is described by a string of terms of the form aa or bcb−1c−1: a
connected sum of projective planes and tori. However, if there is at least one projective
plane we can use Proposition 2.1 which says that P#T = P#P#P to get rid of the
tori.

2.4 Orientability

Given a surface, we need to be able to decide what connected sum it is in the Classi-
fication Theorem without cutting it into pieces. Fortunately there are two concepts,
which are invariant under homeomorphism, which do this. The first concerns orien-
tation:

Definition 5 A surface X is orientable if it contains no open subset homeomorphic
to a Möbius band.
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From the definition it is clear that if X is orientable, any surface homeomorphic to
X is too.

We saw that taking the connected sum with the projective plane means attaching a
Möbius band, so the surfaces which are connected sums of P are non-orientable. We
need to show that connected sums of tori are orientable. For this, we observe that
the connected sum operation works for tori in R3 embedded in the standard way:

so a connected sum of tori can also be embedded in R3. The sketch proof below
assumes our surfaces are differentiable – we shall deal with these in more detail later.

Suppose for a contradiction that X is a non-orientable compact smooth surface in
R3. Then X has an open subset which is homeomorphic to a Möbius band, which
means that we can find a loop (i.e. a closed path) in X such that the normal to
X, when transported around the loop in a continuous fashion, comes back with the
opposite direction. By considering a point on the normal a small distance from X,
moving it around the loop and then connecting along the normal from one side of X
to the other, we can construct a closed path γ : [0, 1] → R3 in R3 which meets X
at exactly one point and is transversal to X at this point (i.e. the tangent to γ at x
is not tangent to X). It is a general fact about the topology of R3 that any closed
differentiable path γ : [0, 1] → R3 can be ‘filled in’ with a disc; more precisely there
is a differentiable map f : D → R3, where D = {(x, y) ∈ R2|x2 + y2 ≤ 1}, such that

γ(t) = f(cos 2πt, sin 2πt)

for all t ∈ [0, 1]. Now we can perturb f a little bit, without changing γ or the values
of f on the boundary of D, to make f transversal to X (i.e. the image of f is not
tangent to X at any point of intersection with X). But once f is transversal to X
it can be shown that the inverse image f−1(X) of X in D is very well behaved: it
consists of a disjoint union of simple closed paths in the interior of D, together with
paths meeting the boundary of D in exactly their endpoints (which are two distinct
points on the boundary of D). Thus f−1(X) contains an even number of points on
the boundary of D, which contradicts our construction in which f−1(X) has exactly
one point on the boundary of D. The surface must therefore be orientable.
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This argument shows why the projective plane in particular can’t be embedded in
R3. Here is an amusing corollary:

Proposition 2.3 Any simple closed curve in the plane contains an inscribed rectan-
gle.

C

Proof: The closed curve C is homeomorphic to the circle. Consider the set of pairs
of points (x, y) in C. This is the product of two circles: a torus. We now want to
consider the set X of unordered pairs, so consider the planar model of the torus. We
identify (x, y) with (y, x), which is reflection about the diagonal. The top side then
gets identified with the right hand side, and under the torus identification with the
left hand side.

The set of unordered points is therefore obtained by identification on the top triangle:
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and this is the projective plane with a disc removed (the Möbius band):

Now define a map f : X → R3 as follows:

(x, y) 7→ (
1

2
(x + y), |x− y|) ∈ R2 ×R

The first term is the midpoint of the line xy and the last is the distance between
x and y. Both are clearly independent of the order and so the map is well-defined.
When x = y, which is the boundary circle of the Möbius band, the map is

x 7→ (x, 0)

which is the curve C in the plane x3 = 0. Since the curve bounds a disc we can
extend f to the surface obtained by pasting the disc to X and extending f to be
the inclusion of the disc into the plane x3 = 0. This is a continuous map (it can be
perturbed to be differentiable if necessary) of the projective plane P to R3. Since P
is unorientable it can’t be an embedding so we have at least two pairs (x1, y1), (x2, y2)
with the same centre and the same separation. These are the vertices of the required
rectangle. 2
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2.5 The Euler characteristic

It is a familar fact (already known to Descartes in 1639) that if you divide up the
surface of a sphere into polygons and count the number of vertices, edges and faces
then

V − E + F = 2.

This number is the Euler characteristic, and we shall define it for any surface. First
we have to define our terms:

Definition 6 A subdivision of a compact surface X is a partition of X into

i) vertices (these are finitely many points of X),

ii) edges ( finitely many disjoint subsets of X each homeomorphic to the open interval
(0, 1)), and

iii) faces ( finitely many disjoint open subsets of X each homeomorphic to the open
disc {(x, y) ∈ R2 : x2 + y2 < 1} in R2,

such that

a) the faces are the connected components of X \ {vertices and edges},

b) no edge contains a vertex, and

c) each edge ‘begins and ends in a vertex’ (either the same vertex or different vertices),
or more precisely, if e is an edge then there are vertices v0 and v1 (not necessarily
distinct) and a continuous map

f : [0, 1] → e ∪ {v0, v1}
which restricts to a homeomorphism from (0, 1) to e and satisfies f(0) = v0 and
f(1) = v1.

Definition 7 The Euler characteristic (or Euler number) of a compact surface X
with a subdivision is

χ(X) = V − E + F
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where V is the number of vertices, E is the number of edges and F is the number of
faces in the subdivision.

The fact that a closed surface has a subdivision follows from the existence of a trian-
gulation. The most important fact is

Theorem 2.4 The Euler characteristic of a compact surface is independent of the
subdivision

which we shall sketch a proof of later.

A planar model provides a subdivision of a surface. We have one face – the interior of
the polygon – and if there are 2n sides to the polygon, these get identified in pairs so
there are n edges. For the vertices we have to count the number of equivalence classes,
but in the normal form of the classification theorem, we created a single equivalence
class. In that case, the Euler characteristic is

1− n + 1 = 2− n.

The connected sum of g tori had 4g sides in the standard model a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g

so in that case χ(X) = 2− 2g. The connected sum of g projective planes has 2g sides
so we have χ(X) = 2− g. We then obtain:

Theorem 2.5 A closed surface is determined up to homeomorphism by its orientabil-
ity and its Euler characteristic.

This is a very strong result: nothing like this happens in higher dimensions.

To calculate the Euler characteristic of a given surface we don’t necessarily have to
go to the classification. Suppose a surface is made up of the union of two spaces X
and Y , such that the intersection X ∩ Y has a subdivision which is a subset of the
subdivisions for X and for Y . Then since V, E and F are just counting the number
of elements in a set, we have immediately that

χ(X ∪ Y ) = χ(X) + χ(Y )− χ(X ∩ Y ).

We can deal with a connected sum this way. Take a closed surface X and remove a
disc D to get a space Xo. The disc has Euler characteristic 1 (a polygon has one face,
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n vertices and n sides) and the boundary circle has Euler characteristic 0 (no face).
So applying the formula,

χ(X) = χ(Xo ∪D) = χ(Xo) + χ(D)− χ(Xo ∩D) = χ(Xo) + 1.

To get the connected sum we paste Xo to Y o along the boundary circle so

χ(X#Y ) = χ(Xo)+χ(Y o)−χ(Xo∩Y o) = χ(X)−1+χ(Y )−1−0 = χ(X)+χ(Y )−2.

In particular, χ(X#T ) = χ(X) − 2 so this again gives the value 2 − 2g for the
connected sum of g tori.

To make all this work we finally need:

Theorem 2.6 The Euler characteristic χ(X) of a compact surface X is a topological
invariant.

We give a sketch proof (which is not examinable).

Proof:

The idea is to give a different definition of χ(X) which makes it clear that it is a
topological invariant, and then prove that the Euler characteristic of any subdivision
of X is equal to χ(X) defined in this new way.

For each continuous path f : [0, 1] → X define its boundary ∂f to be the formal
linear combination of points f(0) + f(1). If g is another map and g(0) = f(1) then,
with coefficients in Z/2, we have

∂f + ∂g = f(0) + 2f(1) + g(1) = f(0) + g(1)

which is the boundary of the path obtained by sticking these two together. Let C0 be
the vector space of finite linear combinations of points with coefficients in Z/2 and C1

the linear combinations of paths, then ∂ : C1 → C0 is a linear map. If X is connected
then any two points can be joined by a path, so that x ∈ C0 is in the image of ∂ if
and only if it has an even number of terms.

Now look at continuous maps of a triangle ABC = ∆ to X and the space C2 of all
linear combinations of these. The boundary of F : ∆ → X is the sum of the three
paths which are the restrictions of F to the sides of the triangle. Then

∂∂F = (F (A) + F (B)) + (F (B) + F (C)) + (F (C) + F (A)) = 0

27



so that the image of ∂ : C2 → C1 is contained in the kernel of ∂ : C1 → C0. We define
H1(X) to be the quotient space. This is clearly a topological invariant because we
only used the notion of continuous functions to define it.

If we take X to be a surface with a subdivision, one can show that because each face
is homeomorphic to a disc, any element in the kernel of ∂ : C1 → C0 can be replaced
by adding on something in ∂C2 by a linear combination of edges of the subdivision:

Now we let V , E and F be vector spaces over Z/2 with bases given by the sets of
vertices, edges and faces of the subdivision, then define boundary maps in the same
way

∂ : E → V and ∂ : F → E .

Then

H1(X) ∼=
ker(∂ : E → V)

im(∂ : F → E)
.

By the rank-nullity formula we get

dim H1(X) = dim E − rk(∂ : E → V)− dimF + dim ker(∂ : F → E).

Because X is connected the image of ∂ : E → V consists of sums of an even number
of vertices so that

dimV = 1 + rk(∂ : E → V).

Also ker(∂ : F → E) is clearly spanned by the sum of the faces, hence

dim ker(∂ : F → E) = 1

so
dim H1(X) = 2− V + E − F.

This shows that V − E + F is a topological invariant. 2
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